

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributing

Contributions are welcome and will be fully credited.

We accept contributions via Pull Requests on Github [https://github.com/moharrum/utilities].

Pull Requests

	PSR-2 Coding Standard [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide] - Check the code style with $ composer check-style and fix it with $ composer fix-style.

	Add tests! - Your patch won’t be accepted if it doesn’t have tests.

	Document any change in behaviour - Make sure the README.md and any other relevant documentation are kept up-to-date.

	Consider our release cycle - We try to follow SemVer v2.0.0 [http://semver.org/]. Randomly breaking public APIs is not an option.

	Create feature branches - Don’t ask us to pull from your master branch.

	One pull request per feature - If you want to do more than one thing, send multiple pull requests.

	Send coherent history - Make sure each individual commit in your pull request is meaningful. If you had to make multiple intermediate commits while developing, please squash them [http://www.git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Changing-Multiple-Commit-Messages] before submitting.

Running Tests

$ composer test

Happy coding!

Detailed description

Provide a detailed description of the change or addition you are proposing.

Make it clear if the issue is a bug, an enhancement or just a question.

Context

Why is this change important to you? How would you use it?

How can it benefit other users?

Possible implementation

Not obligatory, but suggest an idea for implementing addition or change.

Your environment

Include as many relevant details about the environment you experienced the bug in and how to reproduce it.

	Version used (e.g. PHP 5.6, HHVM 3):

	Operating system and version (e.g. Ubuntu 16.04, Windows 7):

	Link to your project:

	…

	…

The MIT License (MIT)

Copyright (c) 2018 Khalid Moharrum khalid.moharram@gmail.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Description

Describe your changes in detail.

Motivation and context

Why is this change required? What problem does it solve?

If it fixes an open issue, please link to the issue here (if you write fixes #num
or closes #num, the issue will be automatically closed when the pull is accepted.)

How has this been tested?

Please describe in detail how you tested your changes.

Include details of your testing environment, and the tests you ran to
see how your change affects other areas of the code, etc.

Screenshots (if appropriate)

Types of changes

What types of changes does your code introduce? Put an x in all the boxes that apply:

	[] Bug fix (non-breaking change which fixes an issue)

	[] New feature (non-breaking change which adds functionality)

	[] Breaking change (fix or feature that would cause existing functionality to change)

Checklist:

Go over all the following points, and put an x in all the boxes that apply.

Please, please, please, don’t send your pull request until all of the boxes are ticked. Once your pull request is created, it will trigger a build on our continuous integration [http://www.phptherightway.com/#continuous-integration] server to make sure your tests and code style pass [https://help.github.com/articles/about-required-status-checks/].

	[] I have read the CONTRIBUTING document.

	[] My pull request addresses exactly one patch/feature.

	[] I have created a branch for this patch/feature.

	[] Each individual commit in the pull request is meaningful.

	[] I have added tests to cover my changes.

	[] If my change requires a change to the documentation, I have updated it accordingly.

If you’re unsure about any of these, don’t hesitate to ask. We’re here to help!

LVRules

[image: _images/lvrules.svg]Latest Version on Packagist [https://packagist.org/packages/moharrum/lvrules]

[image: _images/lvrules1.svg]Total Downloads [https://packagist.org/packages/moharrum/lvrules]

This is a set of useful extra validation methods for the Laravel [https://laravel.com] framework.

Contents

	Note

	Installation

	Rules

	Languages

	Contributing

	Security

	License

Note

Rules included in this package written by me (or other contributers) where not a part of Laravel [https://laravel.com] validation rules at the time they where written. They are a collection of rules that where needed by me or others at that time, please see Laravel [https://laravel.com] docs first before using any of rules in this package.

Installation

Via Composer

$ composer require moharrum/lvrules

Edit config/app.php and add the provider (only for Laravel 5.4 or below):

 'providers' => [
 Moharrum\LVRules\LVRulesServiceProvider::class,
]

Rules

	alpha_num_space - Determine whether or not the given string consists of a combination of letters, numbers, spaces.

	alpha_space - Determine whether or not the given string consists of a combination of letters and spaces.

	alpha_dash - Determine whether or not the given string consists of a combination of letters and dashes.

	decimals - Determine whether or not the given number has (n) decimal point places or not.

	even - Validates if the given value is even number.

	fails - Obviously, validation will always return false.

	finite - Validates if the given is legal finite number.

	infinite - Validates if the given value is infinite.

	lowercase - Validates if the given string is in lowercase format.

	max_words - Validates if the given string contains more than (n) number of words.

	min_words - Validates if the given string contains at least (n) number of words.

	odd - Validates if the given value is odd.

	passes - Obviously, validation will always return true.

	slug - Validates if the given string is url slug.

	time - Validates if the given string is a time format.

	tld - Validates if the given string is a top level domain.

	unique_with - Validates multi columns and values uniqueness.

	uppercase - Validates if the given string is in uppercase format.

	username - Validates if the given string is a username.

Languages

Publishing the language files:

php artisan vendor:publish

Published files can be found at /resources/lang/vendor/lvrules.

Contributing

Please see CONTRIBUTING for details.

Security

If you discover any security related issues, please email khalid.moharram@gmail.com instead of using the issue tracker.

License

The MIT License (MIT). Please see License File for more information.

alpha_dash

Determine whether or not the given string consists of a combination of letters and dashes.

Notes

	Letters: any kind of letter from any language.

	dashes: -.

Usage

'field_name' => 'alpha_dash',

alpha_num_space

Determine whether or not the given string consists of a combination of letters, numbers, spaces.

Notes

	Letters: any kind of letter from any language.

	Spaces: white spaces.

	Numbers: any kind of numeric character in any script.

	Numbers related characters: a negative sign (-) and a dot (.) are also allowed to represent both negative numbers and numbers with decimal points.

Usage

'field_name' => 'alpha_num_space',

alpha_space

Determine whether or not the given string consists of a combination of letters and spaces.

Notes

	Letters: any kind of letter from any language.

	Spaces: white spaces.

Usage

'field_name' => 'alpha_space',

decimals

Determine whether or not the given number has (n) decimal point places or not.

Notes

	Also accepts negative numbers.

	(n) can’t be 0. If you need to do so, please refer to Laravel Validation Rules [https://laravel.com/docs/5.6/validation].

Usage

'field_name' => 'decimals:n[,optional_decimals]',

Where (n=1,2,3,…) is the number of allowed decimal point places.

even

Determine whether the given value is even number or not.

An even number is an integer which is “evenly divisible” by two. This means that if the integer is divided by 2, it yields no remainder.

Usage

'field_name' => 'even',

fails

Obviously, validation will always return false.

Usage

'field_name' => 'fails',

finite

Determine whether the given value is legal finite number or not.

Notes

	See PHP docs [http://php.net/manual/en/function.is-finite.php].

Usage

'field_name' => 'finite',

infinite

Determine whether the given value is infinite or not.

Notes

	See PHP docs [http://php.net/manual/en/function.is-infinite.php].

Usage

'field_name' => 'infinite',

lowercase

Determine whether the given string is in lowercase format or not.

Notes

	See PHP docs [http://php.net/manual/en/function.mb-strtolower.php].

Usage

'field_name' => 'lowercase',

max_words

Determine whether a given string contains more than (n) number of words or not.

Usage

'feild_name' => 'max_words:n',

Where n=1,2,3,…

min_words

Determine whether a given string contains at least (n) number of words or not.

Usage

'feild_name' => 'min_words:n',

Where n=1,2,3,…

odd

Determine whether the given value is odd or not.

Odd numbers can NOT be divided evenly into groups of two.

Usage

'field_name' => 'odd',

passes

Obviously, validation will always return true.

Usage

'field_name' => 'passes',

slug

Determine whether the given value is a valid url slug or not.

Contents

	Syntax

	Options

	Examples

Syntax

slug[:intl]

Options

	intl
This option enables you to check against letters and digits from other languages (see Unicode Categories [https://www.regular-expressions.info/unicode.html]).

Examples

	If you want your slugs to contain only English letters basic latin characters:

'field_name' => 'slug',

	If you want your slugs to contain letters from various languages:

'field_name' => 'slug:intl',

time

Contents

	Syntax

	Options

	Note

Syntax

	24-Hour Format:

time:[24hr[,optional_seconds]]

	12-Hour Format:

time:[12hr
 [,no_meridiems[,no_seconds|optional_seconds|mandatory_seconds(default)]] |
 [,optional_meridiems[,no_seconds|optional_seconds|mandatory_seconds(default)]] |
 [,mandatory_meridiems(default)[,no_seconds|optional_seconds|mandatory_seconds(default)]]
]

	Military Format:

time:[military[,no_colon|optional_colon(default)|mandatory_colon]]

Options

	24hr
The field under validation must be in 24-Hour - HH:mm:ss - time format with mandatory seconds.

	optional_seconds
If you use this option, The field under validation may or may not contain seconds.

	12hr
The field under validation must be in 12-Hour - hh:mm:ss AM|PM - time format.

	no_meridiems
The field can not contain meridiems.

	optional_meridiems
The field may or may not contain meridiems.

	mandatory_meridiems (default)
The field must contain meridiems.

	no_seconds
The field can not contain seconds.

	optional_seconds
The field may or may not contain seconds.

	mandatory_seconds (default)
The field must contain seconds.

	military
The field under validation must be in military - HH[:]mm - time format.

	no_colon
The field can not contain : a colon.

	optional_colon (default)
The field may or may not contain : a colon.

	mandatory_colon
The field must contain : a colon.

Note

If you do not specify any option from the above, the default options will be used.

tld

Determine whether the given value is a valid top level domain or not.

Notes

	Please see ICANN [https://www.icann.org/resources/pages/tlds-2012-02-25-en] list of all valid top level domains.

	Current list version: 2018072501, last updated wed jul 25 07:07:01 2018 utc.

Usage

'field_name' => 'tld',

unique_with

Contents

	Syntax

	Options

	Note

Syntax

unique_with:tablename,attribute_1[:attribute_1_db_col_name],
 attribute_2[:attribute_2_db_col_name],...
 [,ignore:value,column:id]
 [,connection:mysql]
 [,where:col_1_name=value_1,where:col_2_name=value_2,...]

Options

	tablename
Here is where you specify targeted table name.

	attributes
Depending on your form, you may have as many attributes as you need.
Note that if your attributes names are different from the database columns, you can specify column names explicitly.

unique_with:tablename,attribute_1[:attribute_1_db_col_name][,attribute_2[:attribute_2_db_col_name]],...

	ignore
To force unique_with rule to ignore a given ID, you can use this option.

unique_with:tablename,attribute_1[:attribute_1_db_col_name],...,ignore=ID

	column
To specify a custom column name for the ignored value. Defaults to id

unique_with:tablename,attribute_1[:attribute_1_db_col_name],...,ignore=ID,column=my_custom_col_name

	connection
You may use this option to change default connection if needed.

unique_with:tablename,attribute_1[:attribute_1_db_col_name],connection=my_custom_connection

	where
You may also specify additional query constraints by customizing the query using the where method.

unique_with:tablename,attribute_1[:attribute_1_db_col_name][,where:col_1=val1,where:col2=val2,...]

Note

If you do not specify any of the attributes, the method will validate the field under validation.

uppercase

Determine whether the given string is in uppercase format or not.

Notes

	See PHP docs [http://php.net/manual/en/function.mb-strtoupper.php].

Usage

'field_name' => 'uppercase',

username

Determine whether the given value is a valid username or not.

Contents

	Note

	Syntax

	Options

	Examples

Note

What defines a username according to this rule:

	Does not contain white spaces.

	Can only contain letters, numbers, dashes (-), periods (.) and underscores (_).

This rule does not validate username length or uniqueness. However, these rules can be found in Core Laravel Validation Rules [https://laravel.com/docs/5.6/validation]:

	Maximum length [https://laravel.com/docs/5.6/validation#rule-max].

	Minimum length [https://laravel.com/docs/5.6/validation#rule-min].

	Unique [https://laravel.com/docs/5.6/validation#rule-unique].

Syntax

username[:letters_do_lead]

Options

	letters_do_lead
This option makes sure that the given username starts with a letter.

Examples

	This will check if the username consists of letters, numbers and (._-) signs only:

'field_name' => 'username',

	This will check if the username starts with letters and consists of letters, numbers and (._-) signs only:

'field_name' => 'username:letters_do_lead',

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

